Follower by Seamus Heaney

My father worked with a horse-plough His shoulders globed like a full sail strung Between the shafts and the furrow. The horses strained at his clicking tongue.	4
An expert. He would set the wing And fit the bright steel-pointed sock. The sod rolled over without breaking. At the headrig, with a single pluck	8
Of reins the sweating team turned round And back into the land. His eye Narrowed and angled at the ground, Mapping the furrow exactly.	12
I stumbled in his hob-nailed wake, Fell sometimes on his polished sod; Sometimes he rode me on his back Dipping and rising to his plod.	16
I wanted to grow up and plough To close one eye, stiffen my arm. All I ever did was follow In his broad shadow round the farm.	20
I was a nuisance, tripping, falling, Yapping always. But today It is my father who keeps stumbling Behind me, and will not go away.	24

You should aim to spend approximately 30 minutes on each Section.

Section A

1. What occupation did the speaker's father used to have?	1 mark
2. Find three examples (quotations or bits from the poem) to show that the spea proud of what his father used to be.	aker is 3 marks
3. Identify a SIMILE and explain its effect.	2 marks
4. How does the poet feel at the end of the last stanza [verse]? Support your a with evidence.	nswer 4 marks
5. Explain how Seamus Heaney explains his feelings about his father. (Comme poem's language, style and tone, including evidence from the poem)	nt on the 10 marks
	[20]
Section B	
This section is a writing task of original work. It assesses your ability to convey ideas written form. Punctuation, content, creativity, construction, paragraphs, grammar, sp relevance to the task are all assessed.	•
Choose <u>ONE</u> of the following options to be the title of your story and comimaginative and engaging piece of writing accordingly:	pose an
☐ The Lost Treasure ☐ The Worst Day of my Life ☐ Welcome to the Jungle ☐ I Hate it When That Happens	

Total Marks [40]

[20]

MATHEMATICS ENTRANCE EXAMINATION 2011

DURATION: 1 HOUR

Name:

Try to answer as many questions as possible. Write the **answers** in the **spaces provided** and do not rub out any working.

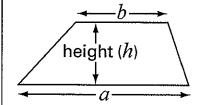
If you get stuck on a question leave it and come back later if you have time.

Instructions

Answers

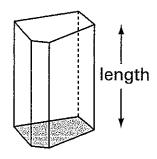
This means write down your answer or show your working and write down your answer.

Calculators



You **must not** use a calculator to answer any question in this test.

Formulae


You might need to use these formulae

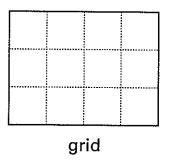
Tapezium

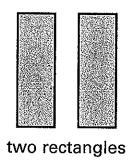
$$Area = \frac{1}{2}(a+b)h$$

Prism

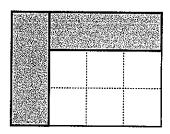
Volume = area of cross-section × length

1. A car park shows this sign.

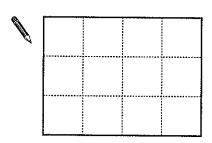

Car	r Park 70p	ing
Pay usino	g any of th	ese coins:
10p	20p	50p
No	change gi	i di


Complete the table to show all the different ways of paying exactly 70p.

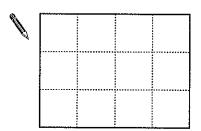
	Number of 10p coins	Number of 20p coins	Number of 50p coins
	7	0	0
į			


. 2 marks

2. I have a square grid and two rectangles.


I make a pattern with the grid and the two rectangles:

The pattern has **no** lines of symmetry.


(a) Put both rectangles on the grid to make a pattern with **only one** line of symmetry.

You must shade the rectangles.

1 mark

(b) Put both rectangles on the grid to make a pattern with rotation symmetry of order 2You must shade the rectangles.

. . . . 1 mark

3. Simplify these expressions.

$$5k + 7 + 3k = \dots$$

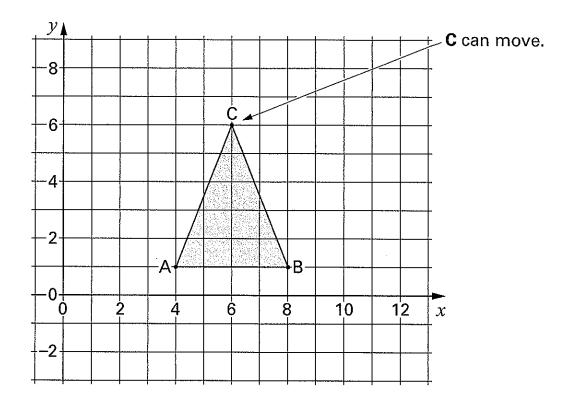
1 mark

1 mark

4. Fill in the missing numbers.

$$\frac{1}{2}$$
 of 20 = $\frac{1}{4}$ of

. . . 1 mark


. . . 1 mark

. . . 1 mark

$$\frac{3}{4}$$
 of 100 = $\frac{1}{2}$ of

$$\frac{1}{3}$$
 of 60 = $\frac{2}{3}$ of

5. On this square grid, A and B must not move.

When C is at (6, 6), triangle ABC is isosceles.

(a) C moves so that triangle ABC is still isosceles.

Where could C have moved to?

Write the coordinates of its new position.

*	()	 1 mark

(b) Then C moves so that triangle ABC is isosceles and right-angled.

Where could C have moved to?

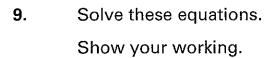
Write the coordinates of its new position.

a	()	 1 mark

	Their shoe sizes are 4, 5, 7 and 10
	What is the median shoe size in Sita's family?
(b)	There are three people in John's family.
	The range of their shoe sizes is 4
	Two people in the family wear shoe size 6
	John's shoe size is not 6 and it is not 10
	What is John's shoe size?

1 mark

. 1 mark

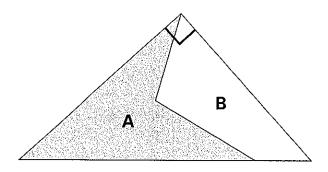

6. (a) There are four people in Sita's family.

7. Use compasses to construct a triangle that has sides 8cm, 6cm and 7cm. Leave in your construction lines. One side of the triangle is drawn for you. 2 marks

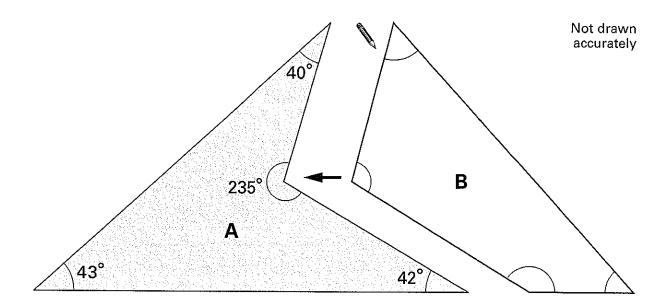
	l work for 45 weeks each year.	
	How much do I pay to travel to work each year? Show your working.	
	£	
(b)	 b) I could buy one season ticket that would let me travit would cost £630 	/el for all 45 weeks .
	How much is that per week?	
	£	

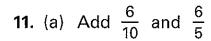
2 marks

8. (a) I pay £16.20 to travel to work each week.


$$2m + 5 = 10$$

$$3t + 4 = t + 13$$


$$t = \dots$$
 2 marks

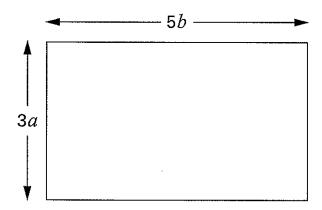

$$2(3n + 7) = 8$$

10. The drawing shows how shapes A and B fit together to make a right-angled triangle.

Work out the size of each of the angles in shape B. Write them in the correct place in shape B below.

Now use an arrow $(\slashed{\psi})$ to show the result on the number line.

. . . . 1 mark


(b) How many **sixths** are there in $3\frac{1}{3}$?

(c) Work out $3\frac{1}{3} \div \frac{5}{6}$ Show your working.

12. (a) The diagram shows a rectangle.

Its dimensions are 3a by 5b

Write simplified expressions for the area and the perimeter of this rectangle.

Perimeter:

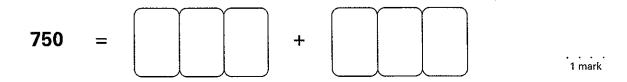
i mark

. . . 1 mark

. . . . 1 mark

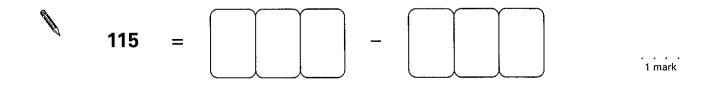
(b) A different rectangle has area $12a^2$ and perimeter 14a What are the dimensions of this rectangle?

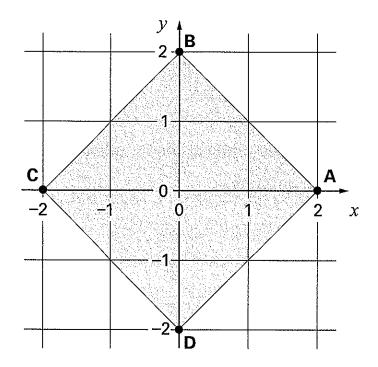
Dimensions: by


13.	Here	are	six	number	cards.

		· 1		1 () (į
1	2		3		4		5	:	6	
	j									

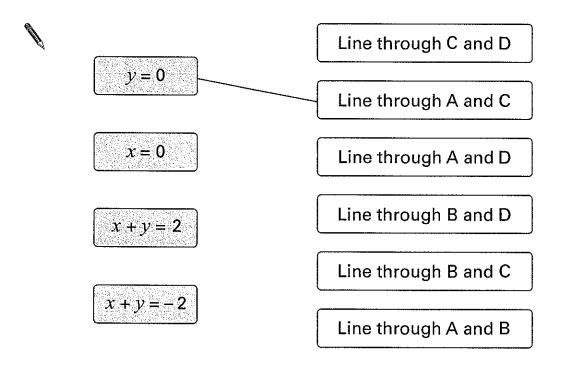
(a) Arrange these six cards to make the calculations below. The first one is done for you.

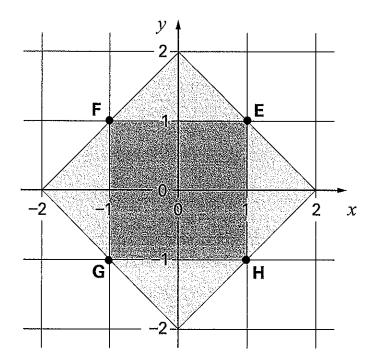

$$939 = \boxed{4 2 3} + \boxed{5} \boxed{1} \boxed{6}$$



. . . . 1 mark

(b) Now arrange the six cards to make a difference of 115

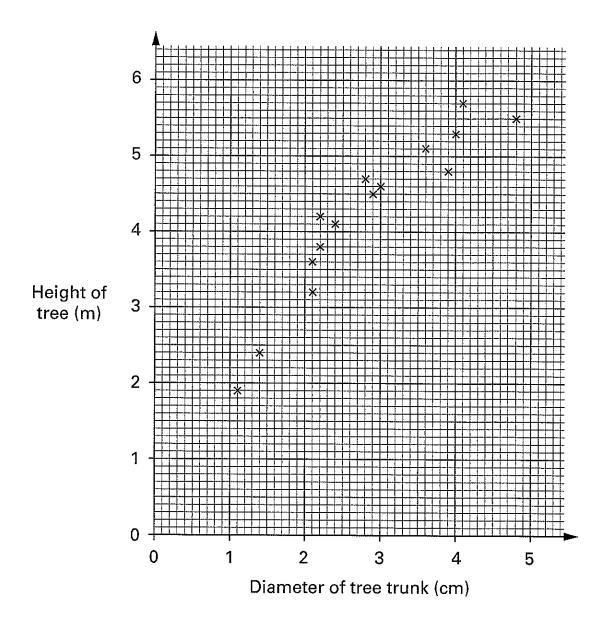

14. The diagram shows a square drawn on a square grid.


(a) The points A, B, C and D are at the vertices of the square.

Match the correct line to each equation.

One is done for you.

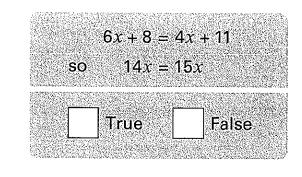
. . . 2 marks The mid-points of each side, E, F, G and H, join to make a different square.

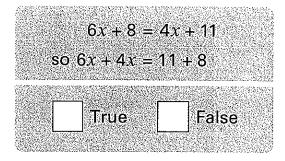

(b) Write the equation of the straight line through E and H.

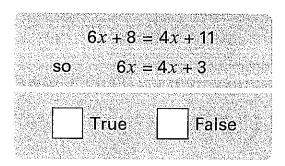
(c) Is y = -x the equation of the straight line through **E** and **G**? Tick (\checkmark) Yes or No.

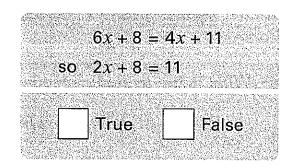
Yes No

Explain how you know.

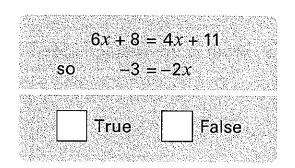

15. The scatter graph shows information about trees called poplars.



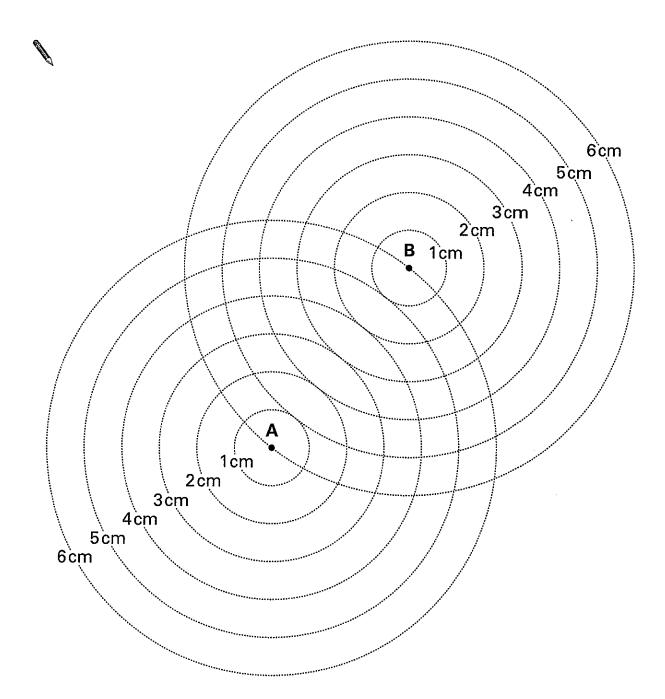

(a) What does the scatter graph show about the **relationship** between the diameter of the tree trunk and the height of the tree?


(b)	The height of a different tree is 3m. The diame	eter of its trunk	is 5cm.
	Use the graph to explain why this tree is not li	kely to be a po	plar.
			 1 mar
(c)	Another tree is a poplar. The diameter of its tre	unk is 32cm	
(0)	Estimate the height of this tree.	dik 15 0.2 0111.	
	Estimate the holyne of this trool		
	•••	m	 1 mar
(d)	Below are some statements about drawing line	es of best fit	
	on scatter graphs.		
	For each statement, tick (\checkmark) to show whether the	ne statement is	True or False.
Α.	Lines of best fit must always		
	go through the origin.	True	False
	have a maritima avadiant		
	have a positive gradient.	True	False
	join the smallest and the largest values.	True	False
	join the emanest and the largest values.		Taise
	pass through every point on the graph.	True	False
		L	
	·		
			2 mark

18. (a) Pupils started to solve the equation 6x + 8 = 4x + 11 in different ways. For each statement below, tick (\checkmark) True or False.



$$6x + 8 = 4x + 11$$
so
$$2x = 3$$
True False


(b) A different pupil used trial and improvement to solve the equation 6x + 8 = 4x + 11

Explain why trial and improvement is not a good method to use.

3 marks

19. The diagram below shows two points A and B that are 6cm apart.

Around each point are six circles of radius 1cm, 2cm, 3cm, 4cm, 5cm and 6cm. Each circle has either A or B as its centre.

- (a) On the diagram, mark with a cross any points that are 4cm away from A and 4cm away from B.
- (b) Now draw the locus of all points that are the same distance from A as they are from B.

1 mark

. . . . 1 mark

(a)	When x is even, $(x-2)^2$ is even	When x is even, $(x-2)^2$ is odd
	Show how you know it is true for all e	even values of x
		1 ma
(b)	When x is even, $(x-1)(x+1)$ is even	When x is even, $(x-1)(x+1)$ is odd
	Show how you know it is true for all e	even values of x

1 mark

For each part of the question, tick (\checkmark) the statement that is true.

20.